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Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), liver with more than 5.5% fat
content, is a leading risk factor for chronic liver disease with an estimated worldwide prevalence
of 30%. Though MASLD is widely recognized to be polygenic, genetic discovery has been
lacking primarily due to the need for accurate and scalable phenotyping, which proves to be
costly, time-intensive and variable in quality. Here, we used machine learning (ML) to predict
liver fat content using three different data modalities available in the UK Biobank: dual-energy
X-ray absorptiometry (DXA; n = 46,461 participants), plasma metabolites (n = 82,138), and
anthropometric and blood-based biochemical measures (biomarkers; n = 262,927). Based on
our estimates, up to 29% of participants in UKB met the criteria for MASLD. Genome-wide
association studies (GWASs) of these estimates identified 15, 55, and 314 loci associated with
liver fat predicted from DXA, metabolites and biomarkers, respectively, totalling 321 unique
independent loci. In addition to replicating 9 of the 14 known loci at genome-wide significance,
our GWASs identified 312 novel loci, significantly expanding our understanding of the genetic
contributions to liver fat accumulation. Genetic correlation analysis indicated a strong correlation
between ML-derived liver fat across modalities (rg ranging from 0.85 to 0.96) and with clinically
diagnosed MASLD (rg ranging from 0.74 to 0.88), suggesting that a majority of the newly
identified loci are likely to be relevant for clinical MASLD. DXA exhibited the highest precision,
while biomarkers demonstrated the highest recall, respectively. Overall, these findings
demonstrate the value of leveraging ML-based trait predictions across orthogonal data sources
to improve our understanding of the genetic architecture of complex diseases.

Introduction
Metabolic dysfunction-associated steatotic liver disease (MASLD), characterized by liver fat
content exceeding 5.5% (hepatic steatosis), is a leading risk factor for end-stage liver disease,
affecting more than 30% of the global population1. While MASLD is moderately heritable
(~39%)2, and is widely recognized to be polygenic, to date genome-wide association studies
(GWASs) have identified only about 15 replicable loci harboring common genetic variants3,4,
which stands in stark contrast to other common diseases with similar prevalence and
heritability5,6. Genetic discovery in MASLD has been lacking in large part because of limited
sample sizes (the number of cases in particular), underdiagnosis, and the methodologic
challenge of accurately determining the phenotype in terms of the presence or absence of
disease. For instance, the largest GWAS meta-analysis of clinical MASLD involved 9,491 cases,
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whereas the GWAS for a disease with a comparable prevalence and heritability, such as type 2
diabetes, included 180,834 cases6. Similarly, previous studies have demonstrated that, while
fewer than 2% of the participants in the UK Biobank (UKB) have received the diagnosis
(ICD9/10) for MASLD, 17% of the participants met the imaging-based criteria for MASLD,
defined as liver fat content greater than 5.5%7. Finally, quantitative trait GWASs offer enhanced
statistical power over binary-label GWASs, since the use of continuous data captures a broader
range of phenotypic variation, minimizes information loss inherent in binary categorization,
enables the study of intermediate phenotypes, and enhances accuracy by avoiding
misclassification issues. These challenges underscore the need for larger and better
phenotyped datasets to better understand the genetic architecture of liver fat accumulation, and
by extension, hepatic steatosis related pathologies.

Magnetic resonance imaging (MRI)-derived proton density fat fraction (PDFF) is a widely used
non-invasive method for accurately quantifying liver fat, allowing the detection of the presence
and degree of hepatic steatosis8. While highly effective, the computation of PDFF is costly and
time-intensive9. Recent studies by Langner et al.10 and Haas et al.7 have demonstrated the utility
of machine learning (ML) techniques in predicting liver fat content from MRI, achieving
remarkably high predictive performance with R2 values exceeding 0.90. However, the high
costs, limited availability, and logistical challenges associated with MRI scanning present
significant barriers for the large-scale measurements of liver fat needed for well-powered
GWASs11. Therefore, there is a need for alternative data modalities and methods that are easily
scalable and cost-effective for the quantification of liver fat content.

Dual-energy X-ray absorptiometry (DXA) has long been used as a valuable imaging modality for
estimating bone density and body composition, encompassing measurements of fat and muscle
mass12. Although DXA scans may not offer the same level of detailed information as MRI, they
present distinct advantages: they are generally more cost-effective, widely available, and easier
to obtain13. While there are reports suggesting the limited utility of DXA in quantifying liver fat
content, these studies are constrained by factors such as small sample size, training without
test sets, and the absence of reliable ground-truth measures, such as PDFF14,15,16.

In an alternative approach, anthropometric and blood-based biochemical measures (collectively
referred to as biomarkers throughout this study), have recently been used to gain insights into
the genetic underpinnings of MASLD. For instance, Miao et al.17 used ML on a set of biomarkers
to construct a synthetic MASLD case-control cohort in the UKB. This cohort of 28,396 imputed
MASLD cases and 108,652 controls was then used in a GWAS, reporting 94 loci. However, it is
important to note that their approach comes with certain limitations, including a constrained
sample size, and the use of binary labels. Furthermore, the reported associations were not
thoroughly characterized in terms of their relevance to clinically diagnosed MASLD. Similar to
biomarkers, metabolomics - for example, lipidomics-based algorithms - have been developed for
the diagnosis of MASLD, but their performance has been demonstrated only on small cohorts18.
Some of these limitations could be addressed by increasing sample size and/or by measuring a
wider metabolic profile in each patient19.
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In this study, we leverage ML on three different data modalities available in the UKB - DXA,
metabolites and biomarkers - to predict liver fat content, with varying phenotypic accuracies and
sample sizes. Our ML-derived predictions of liver fat content quantify liver fat as a continuous
trait and/or indicate binary classification of MASLD. We conduct GWAS of ML-derived liver fat
content, separately, within each of our data modalities, alongside PDFF, significantly expanding
the genetic landscape of liver fat accumulation. Using pairwise genetic correlations, we
demonstrate that a majority of GWAS associations are likely relevant to clinically diagnosed
MASLD. Furthermore, we perform a comparative analysis of genetic loci across modalities,
demonstrating the robustness of our findings. Our results underscore the value of ML
approaches, highlighting their ability to leverage diverse data modalities as part of a
comprehensive strategy for novel target discovery.

Methods

Data used
The UKB study. This research was conducted using the UKB resource under the approved
application number 51766. A full description of the UKB study design is presented elsewhere20.
Briefly, the UKB is a population-based, prospective cohort consisting of approximately half a
million individuals between the ages of 40-69 with paired genetic and phenotypic information21.
These participants were enrolled between 2006 and 2010 from multiple sites across the United
Kingdom.

The UKB imaging initiative. The UKB initiated the largest multi-modal imaging study in 2014,
with the goal of collecting imaging data from 100,000 previously enrolled participants. As part of
this initiative, a significant proportion of the targeted 100,000 participants underwent brain,
cardiac and abdominal MRI, DXA, and carotid ultrasound between 2014 and 201922.

Metabolic markers. A panel of 249 metabolites (168 measures in absolute levels and 81 ratio
measures) including lipoprotein lipids, fatty acids, and small molecules such as amino acids,
ketones, and glycolysis metabolites, were measured using the Nightingale Health nuclear
magnetic resonance (NMR) platform from blood samples collected at baseline from 118,461
participants (first data release, made available to approved UKB researches in 2021)24. In
addition to baseline measurements, repeat assessments from a subset of about 1,500
participants were also included in the same data release. Details of the Nightingale Health NMR
platform have been described previously25,26. The quality control protocol used to process this
dataset has been described in detail24.

Biochemistry markers. A total of 34 biochemical markers were measured in biological samples
(blood, urine and saliva) collected at baseline from all 500,000 participants27,28. These markers
were selected based on their relevance for studying a wide range of diseases and included
established risk factors for disease (e.g. lipids for vascular disease, sex hormones for cancer),
diagnostic measures (e.g. HbA1c for diabetes and rheumatoid factor for arthritis) or markers of
phenotypes that were not otherwise well assessed (e.g. renal and liver function).
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Data preparation for liver fat imputation
DXA. We downloaded whole-body DXA scans (n = 67,326; data field 20158) and abdominal
MRI-derived PDFF measurements (n = 33,058; data field 40061) from the UKB23. PDFF
measures were used as ground truth to train our ML algorithms for imputing liver fat content
from DXA, metabolites and biomarkers.

Metabolites. We used metabolomics data from the first data release, comprising 249 metabolite
measurements from a random selection of 118,461 baseline plasma samples in the UKB (data
field 220). The metabolites dataset, downloaded from the UKB, underwent several processing
steps. First, we removed fields that were not related to metabolite measurements, such as
quality control flags. Next, we excluded all non-baseline measurements. Finally, we removed
metabolites and samples with one or more missing values, resulting in a final dataset with
117,024 participants and 188 metabolites. We observed a strong pairwise phenotypic correlation
between several metabolites (Supplementary Fig. 1). Therefore, we performed principal
component analysis (PCA) on the metabolites dataset and used all principal components (PCs;
same number as the number of metabolites) as inputs to our ML model (described below). We
also included age, sex, and body mass index (BMI) terms - weight (in kilograms), inverse of
height (in meters), and inverse of height squared - due to the potential for biased effect
estimates from the inclusion of ratio covariates29, as inputs to our model.

Biomarkers. We selected all the biochemical markers measured in blood collected at baseline
from all participants (data field 18518), and supplemented them with several hematological
assay measures (blood counts, assayed at baseline) and anthropometry measures. We
excluded markers with data missing from more than 10% of the participants. The final set of 37
measures - collectively referred to as biomarkers throughout this study - is shown in
(Supplementary Table 1). With the inclusion of age and sex (as covariates), we ended up with a
total of 39 traits. Most of these traits underwent a log transformation, except for those with a
binary distribution (diabetes status and sex) or appearing normal (age).

ML workflows for liver fat imputation
DXA-based imputation. Initially, we identified 28,908 subjects in the UKB with both whole-body
DXA scans and abdominal MRI-derived PDFF estimates available. Subsequently, these
samples were split into a training set (n = 23,126), a validation set (n = 2,890), and a test set (n
= 2,892). During the study, the UKBB made DXA scans and PDFF estimates available for an
additional 2,800 participants, constituting a second test set (test set 2).

We compared two deep learning architectures, ResNet-5030 and EfficientNet-B031, for predicting
PDFF and other adiposity terms, including visceral adipose tissue (VAT), abdominal
subcutaneous adipose tissue (SAT), and gluteofemoral adipose tissue (GFAT) from DXA scans.
The final layer of these models was replaced with a layer containing nodes corresponding to
PDFF, VAT, SAT and GFAT. We used the ImageNet32 pre-trained models as input for the first
epoch and fine-tuned the models using our training set. During the training process, we applied
trimming to the whole-body DXA scans (removing 10% from the top and 25% from the bottom),

4

https://paperpile.com/c/xqi8Kt/qAZh
https://docs.google.com/presentation/d/1EuJ0__Uhf487i1JaXiN2GZxM5_4_c-nbusaTwLjRlEU/edit#slide=id.g2a713d570fc_2_44
https://paperpile.com/c/xqi8Kt/uXzt
https://docs.google.com/spreadsheets/d/1MFiAa8QI38tpOLAtIGYMxxGvdEuqgEDSlKe2OSgN9RE/edit#gid=0
https://paperpile.com/c/xqi8Kt/J9YR
https://paperpile.com/c/xqi8Kt/W52n
https://paperpile.com/c/xqi8Kt/bx0p


Copyright 2024 Insitro, Inc. All rights reserved. No reuse allowed without permission.

rescaled them to 320x320, and then applied random data augmentation, including 10-degree
rotations and 5% translations. These steps were implemented using PyTorch v2.0.1 and
Torchvision v0.15.2.

Metabolite- and biomarker-based imputation. We first identified participants from both metabolite
and biomarker modalities who also had PDFF measurements (n = 9,723 for metabolites; n =
40,533 for biomarkers). Within each modality, we implemented a 90:10 split, reserving 10% of
the participants for model evaluation (the test set). In both modalities, we employed XGBoost33

regression using the input features described earlier (see data preparation) and log-transformed
PDFF values as the outcome. Additionally, the time between the baseline and imaging visit was
included as a feature in our models. For predictions on samples without an imaging visit, this
term was set to zero. Removing this term did not significantly impact our model (data not
shown). To optimize model performance, we conducted hyperparameter tuning using a five-fold
cross-validation approach. We then retrained the models on the entire 90% split.

Ablation analysis within the biomarker modality
The goal of the ablation analysis within the biomarker modality was to determine whether a
single biomarker or a set of strongly correlated biomarkers predominantly influenced the model
predictions. In order to identify markers that are strongly correlated with each other, we
conducted a clustering analysis on the complete set of input features. Through visual inspection,
we identified four sets of strongly correlated biomarkers (Supplementary Fig. 2). These sets
were categorized as: i) overall body composition; ii) components of blood; iii) liver enzymes; and
iv) lipid metabolism and cardiovascular health. These biomarkers were ablated as a set, while
the remaining biomarkers were ablated individually (Supplementary Fig. 2 & Supplementary
Table 2).

The ablation analysis model training followed a process similar to that of the full model; 10% of
the data were set aside for evaluation, and hyperparameter tuning was carried out using
five-fold cross-validation. The models were subsequently trained on the complete 90% split, and
evaluation was performed on the reserved 10% of the data. To ensure consistency across
ablated models, the same samples were used for both training and evaluation in each case,
aligning with the approaches employed for the full model.

Genotype data preparation
We downloaded the imputed genotype dataset release (version 3), and selected variants with
minor-allele frequency > 0.001, imputation quality (INFO) score > 0.8, and Hardy-Weinberg
disequilibrium P value > 1.0 x 10-10. Following Bycroft et al.5, we removed samples if they were
flagged as outliers by missingness or heterozygosity, or displayed sex chromosome aneuploidy.
Samples were further filtered down to unrelated samples with self-reported “White-British”,
“White”, or “Irish” ancestry, and those that were within ±seven standard deviations of the first six
genetic PCs20. The final dataset after quality control included 356,798 participants and
10,874,712 variants.
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Genome-wide association study (GWAS)
GWASs were conducted using an additive linear regression model with PLINK (v1.9)34 software.
Abdominal MRI-derived PDFF (downloaded from the UKB) and liver fat percentages predicted
from DXA, metabolites, and biomarkers were inverse normal transformed, and were regressed
on genotypes using array type, age, age2, age3, sex, age*sex, age2*sex, age3*sex, top 20
genetic PCs, and BMI terms weight, 1/height and 1/height squared as covariates. We limited all
our GWASs to unrelated participants of white British ancestry.

Locus definition
We first resolved GWAS summary statistics to independent signals using PLINK’s34 linkage
disequilibrium (LD) clumping (LD r2 threshold = 0.1 and window size = ±500 kb). Signals whose
lead variants were separated by 1 Mb or less were subsequently merged into what we define
here as a locus, retaining the variant with the strongest association. Any reference to loci
henceforth refers to clumping with these parameters, unless otherwise noted.

GWAS meta-analysis of clinical MASLD
We downloaded all four individual cohort-level, case-control GWAS summary statistics of
clinically diagnosed MASL from Sveinbjornsson et al.3, and meta-analyzed them using the
inverse-variance weighted average method based on a fixed-effects model implemented in
META35. The meta-analyzed summary statistics included 9,491 patients with MASL and 876,210
population controls.

Known loci
Based on the latest GWAS meta-analyses reported by Sveinbjornsson et al.3 and Chen et al.4,
we identified 15 loci demonstrating a robust association with clinically diagnosed MASL, MASLD
and/or PDFF as known loci. Briefly, Sveinbjornsson et al.3 conducted a GWAS on PDFF
estimates (n = 36,116) in the UKB (our internal GWAS of PDFF included a subset of 23,658 of
these individuals). Additionally, Sveinbjornsson et al.3 meta-analyzed GWAS summary statistics
from four independent cohorts of clinically diagnosed MASL (identified using ICD9/10; n = 9,491
patients with MASL and 876,210 population controls). On the other hand, Chen et al.4, reported
a meta-analysis of two independent cohorts of clinical MASLD and four independent cohorts of
PDFF.

Of the two lead missense variants in TM6SF2, rs58542926 and rs187429064, reported by
Sveinbjornsson et al.3, rs187429064 was removed as it was part of the same locus (see our
locus definition above). Similarly, we omitted rs1229984, a missense variant in ADH1B that was
reported in both the studies as it was only ~250 kb away from the lead variant in MTTP.
Additionally, rs17817449, an intronic variant in FTO and rs10756038, an intronic variant in
PTPRD loci from Chen et al. were excluded because these loci primarily capture BMI, and our
analysis was adjusted for BMI.
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SNP-based heritability and genetic correlation
We calculated SNP-based heritability of each trait and the genetic correlation (rg) between pairs
of traits by conducting LD score (LDSC) regression36,37 analysis on the GWAS summary
statistics. We used the precomputed LD scores based on European samples from the UKB as a
reference (https://pan.ukbb.broadinstitute.org/docs/ld).

Results
We leveraged ML to predict liver fat content using three different data modalities available in the
UKB: DXA scans, plasma metabolites, and anthropometric and blood-based biochemical
measures (biomarkers; Supplementary Table 1). We used abdominal MRI-derived PDFF
measures available in the UKB as a ground truth. Within each modality (DXA, metabolites, or
biomarkers), we partitioned the dataset to create at least one hold-out independent test set,
ensuring it was not used during the model training or tuning. We used the R2 statistic on these
test sets as the primary measure to assess our model performance. The imputed liver fat
percentages were then used to conduct GWASs, separately within each modality, alongside
MRI-derived PDFF. An overview of our study is presented in Fig. 1.

Liver fat prediction from DXA, metabolites, and biomarkers
DXA scans. Following the comparison of fine-tuning using either EfficientNet-B0 or ResNet-50
on the training and validation sets, we observed superior performance with EfficientNet-B0,
achieving R2 values of 0.63 and 0.65 in test set 1 and test set 2 (see Methods), respectively
(Fig. 2). These results indicate that our models could explain approximately 63-65% of the
variance in abdominal MRI-derived PDFF, reflecting a substantial correlation between the
predicted and actual values (rho = 0.80; Fig. 2). To further assess the utility of these predictions,
we evaluated their ability to predict MASLD case-control status, defined by the PDFF threshold
of 5.5% in the test set. We observed an area under the receiver operating characteristic
(AUC-ROC) curve value of 0.90 (Fig. 2).

To further interpret the DXA model, we conducted two follow-up analyses. First, we manually
inspected gradient-based saliency maps to assess the importance of different regions in the
input whole-body images for the model's prediction. Examples in Supplementary Fig. 3 show
that the area around the liver exhibits meaningful classification gradients in two individuals.
Notably, the relative saliency of the liver is more pronounced in leaner subjects compared to
individuals with greater peripheral adiposity, possibly reflecting an enhanced ability of the model
to assess liver fat content in leaner individuals. Second, we performed masking and subsetting
studies to systematically illustrate the importance of the liver area to our model. We masked the
left or right half of the images in the training and validation sets, reran the training process, and
tested the prediction performance on the validation set. An example of masking is shown in
Supplementary Fig. 3. Additionally, we tested subsetting the images into one of four quadrants,
limiting input data to one quadrant at a time for liver fat predictions. This approach enabled a
nuanced evaluation of the model’s sensitivity to different regions of the images (Supplementary
Fig. 3).
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The results of these studies are summarized in Supplementary Table 3. Taken together, these
results demonstrate that higher performance liver fat prediction is achieved only when the liver
area is retained in the images, corresponding to the left side in the left-right experiment, and the
top-left quadrant in the quadrant-based experiment. In contrast, when the liver area is absent in
the input data, validation set R2 scores drop from 0.58 or greater to less than 0.34, representing
a >40% decrease in the predictive performance.

Metabolites and biomarkers. While the test set R2 values for metabolite-based (R2 = 0.34) and
biomarker-based (R2 = 0.37) predictions were notably lower than those obtained from DXA,
scatter plots revealed a linear trend between PDFF measurements and predicted liver fat
percentages for both modalities (Fig. 2). To further investigate the practical utility of these
predictions, we assessed their ability to predict MASLD cases from controls, defined by the
PDFF threshold of 5.5% in the test set. Notably, both metabolites and biomarkers exhibited high
AUC-ROC values (0.82 for both), suggesting their effectiveness in predicting MASLD status
(Fig. 2).

Next, to explore whether individual biomarkers might be disproportionately influencing our
predictions, we conducted an ablation study. These results revealed an extremely strong
correlation with liver fat predicted from the full model, and the set R2 showed no meaningful
change regardless of the ablation set used (Supplementary Fig. 4). This observation persisted
even when removing single biomarkers or the cluster of strongly correlated markers
(Supplementary Fig. 4).

MASL is largely underdiagnosed in the UKB
While 848 (2%), 2,133 (3%) and 5,575 (2%) of the UKB participants with DXA, metabolites and
biomarker-imputed liver fat content received an ICD9/10 diagnosis code for MASL (k76), 11,565
(25%), 20,225 (25%) and 75,653 (29%) met the criteria for MASL, defined as liver fat content
>5.5% (Table 1). In alignment with our ML-based imputations, 5,725 (24%) participants with
MRI-derived PDFF measurements met the criteria for MASL, while only 430 (2%) of the 23,658
individuals have received a clinical diagnosis (Table 1). These findings are consistent with a
previous report7.

Genetic associations of liver fat
We conducted GWASs, separately, for MRI-derived PDFF (n = 23,658), liver fat percentage
predicted from DXA (n = 46,461), metabolites (n = 82,138) and biomarkers (n = 262,927),
restricting to unrelated individuals of white British ancestry (see Methods). In line with the
effective sample size, our GWAS revealed seven loci associated with PDFF (h2SNP = 0.18, se =
0.036), 15 with DXA (h2SNP = 0.17, se = 0.015), 55 with metabolites (h2SNP = 0.19, se = 0.02), and
314 with biomarker-derived liver fat (h2SNP = 0.23, se = 0.015; Fig. 3). We observed inflation of
the summary statistics (lambda GC = 1.09, 1.26, and 1.73 for DXA, metabolites, and
biomarkers, respectively); however, the LD score regression (LDSC) intercept (1.02, 1.08, and
1.12 for DXA, metabolites, and biomarkers, respectively) and the ratio (0.13, 0.20 and 0.09 for
DXA, metabolites and biomarkers, respectively) suggests that these associations are primarily
driven by polygenicity. Of the seven PDFF-associated loci in our study (Table 2): 5, 2, and 5
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respectively were replicated by DXA, metabolites, and biomarkers at genome-wide significance;
7, 5, and 7 had effects in the same direction; and 6, 2, and 7 of these directionally consistent loci
showed at least nominal evidence of replication (P < 0.05; Table 2).

Genetic correlations across modalities
To assess the extent to which genetic variation explains the correlation between traits, we
estimated the genetic correlation between liver fat derived from DXA, metabolites, biomarkers,
PDFF, and clinically diagnosed MASLD3 (see Methods). Because the GWAS from clinical
MASLD was not adjusted for BMI, we used liver fat summary statistics that were similarly not
adjusted for BMI from all three data modalities, alongside MRI-derived PDFF. We found a strong
genetic correlation between all pairs of traits with (rg ranging from 0.74 to 0.89, with the
strongest correlation of 0.89 observed between DXA and PDFF; Fig. 3b). Overall, these results
suggest a substantial shared genetic basis for liver fat predicted from the three modalities, and
supports the relevance of our ML-imputed liver fat genetic associations to both PDFF and, more
importantly, clinically diagnosed MASLD. Notably, biomarker-derived liver fat demonstrated a
genetic correlation of 0.88 with clinical MASLD, suggesting that a majority of the newly-identified
loci are likely to be clinically relevant (Fig. 3b).

Relative value of each modality for genetic discovery in MASLD
To assess the effectiveness of each of the three data modalities for genetic discovery in
MASLD, we first evaluated the ability of our ML-imputed liver fat to detect known associations.
Considering variations in sample size across modalities, we employed directional consistency
assessments along with nominal evidence of association as a metric. Among the 14 of the 15
previously known loci (see Methods) present in our study, 14, 10 and 13 exhibited a directionally
consistent effect on liver fat derived from DXA, metabolites and biomarkers, respectively, and
12, 5 and 13 of these showed an evidence of replication at P < 0.05 (Table 2). While certain
known associations, such as GCKR, COBLL1, TRIB1 and INSR, demonstrated an enhanced
strength of association with liver fat in line with increased sample size across modalities from
DXA to biomarkers irrespective of the prediction accuracy, others, including MTARC1, GPAM,
TMC4, TM6SF2 and PNPLA3, exhibited a diminished strength of association (Table 2 &
Supplementary Fig. 5). This suggests that ML imputed liver fat predictions capture multiple
mechanistic components of MASLD, with some components being more precisely captured
while others appear to be noisier. Surprisingly, the association between liver fat predicted from
metabolites and the two well known MASLD loci, APOE and PNPLA3, was directionally
inconsistent, suggesting a potential modality-specific nature of our liver fat predictions in
capturing certain pathobiological or mechanistic components of MASLD (Table 2).

Next, we employed precision-recall analysis to evaluate the performance of our modalities
(Supplementary Fig. 6). We defined precision as the fraction of ML-imputed liver fat loci in our
study that were among the known loci, and recall as the fraction of known loci that were
detected by our imputed liver fat GWASs. We observed that while DXA modality was most
informative (67% precision and 75% recall), plasma metabolites were least informative (18%
precision and 50% recall). Lastly, liver fat predicted from biomarkers yielded an 88% recall
value, but only had a 15% precision. However, the observed lower precision for biomarkers
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could be attributed to limited statistical power in clinically diagnosed MASLD case-control
GWASs, potentially hindering the identification in those studies of many of our
biomarker-derived liver fat associations.

Biomarker-predicted liver fat loci are less likely to be driven by individual markers
To assess whether our biomarker-derived liver fat loci were driven by one or more of the
individual biomarkers used as inputs to our model as opposed to capturing the “aggregate trait”
(liver fat), a series of GWASs were conducted for liver fat values predicted using leave-one-out
approach. Because we noticed an extremely strong phenotypic correlation between some of the
markers, resulting in clusters, we also predicted liver fat using the leave-one-cluster-out
approach (Supplementary Fig. 2 & Supplementary Table 2). In line with phenotypic correlations
and prediction accuracies, (Supplementary Fig. 4), genetic correlations at the level of the whole
genome yielded similar results when compared with the main analysis using liver fat predicted
from all the biomarkers (Supplementary Fig. 7).

Expanding the genetic landscape of liver fat accumulation and MASLD
Considering the remarkably strong genetic correlation with PDFF and clinically-diagnosed
MASLD, we next evaluated the utility of our ML-imputed liver fat GWASs to further expand our
understanding of the biology of clinical MASLD. Across DXA, metabolites and biomarker
modalities, we identified 15, 55 and 314 loci, respectively, totalling 321 independent loci
collectively; of these, 10, 51, and 305 are novel contributing to a total of 312 novel loci (Fig. 3).

Next, of the 10, 51 and 305 of our newly identified loci from DXA, metabolites and biomarkers,
respectively, 6, 27 and 196 had data available in the clinically diagnosed MASLD case-control
GWAS summary statistics17; of these, 5 (83%), 18 (67%) and 153 (78%) showed directionally
concordant effects on clinical MASLD (Supplementary Fig. 8). We also compared our findings to
those identified by Miao et al., from the GWAS of their biomarker-imputed MASLD case-control
status in the UKB, observing a strong correlation between the effect estimates (Supplementary
Fig. 8). Collectively, these findings suggest that as the sample size of clinical MASLD GWAS
(the number of cases in particular) increases, many of our newly identified ML-imputed liver fat
associations are likely to become more apparent.

Among the newly identified associations are FGF21 and its receptors FGFR2 and FGFR4,
MLXIPL and LPL. There are multiple clinical trials prosecuting FGF21 agonism as a therapeutic
strategy against the whole spectrum of MASLD, including steatosis, fibrosis and cirrhosis38,39.
However, to our knowledge, there was no prior human genetics support for these targets.

The MLXIPL gene encodes a transcription factor carbohydrate response element-binding
protein (ChREBP) that is involved in the regulation of various genes, including FGF21 - one of
our novel associations - and GCKR - a well known locus for MASLD, related to carbohydrate
and lipid metabolism. In the context of MASLD, MLXIPL is recognized as a master regulator of
de novo lipogenesis, a process by which the liver synthesizes fatty acids from non-lipid
precursors, such as carbohydrates40. Increased de novo lipogenesis is often observed in
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individuals with MASLD, contributing to the accumulation of fat in the liver40,41. In addition,
expression of MLXIPL has been reported to be altered in individuals with MASLD40.

LPL is an enzyme involved in lipid metabolism, playing a crucial role in the hydrolysis of
triglycerides, which can affect the availability of fatty acids for storage and energy production. In
relevance to MASLD, Ghodsian et al.42 demonstrated that genetically predicted LPL expression
in subcutaneous adipose tissue is associated with clinically diagnosed MASLD using
transcriptome-wide association analysis. Furthermore, using a Mendelian randomization
framework, Li et al.43 identified that among nine lipid-lowering drug targets, LPL is the only drug
target associated with a lower MASLD risk.

Liver fat associations with multimodal support
Next, we further evaluated liver fat content associated loci with concurrent support from multiple
modalities. Having GWAS loci identified in more than one data modality offers several
advantages. First, it mitigates modality-specific biases, providing a form of cross-validation that
enhances confidence in the robustness and reproducibility of the associations. Second, it
strengthens the argument for the biological relevance of the identified loci. A majority of our loci
with genome-wide significant association in at least one modality demonstrated replicative
evidence in one or both of the remaining modalities. The breakdown of all the 321 independent
loci (collectively identified from across our three modalities) and their varying level of multimodal
support at P < 0.05 / 321 is presented in Fig. 4a.

Given the varying prediction accuracy and sample size across modalities - factors that could
contribute to differences in statistical power - we evaluated multimodal support for each locus
with genome-wide significant association in the discovery modality by utilizing discovery
modality-specific Bonferroni-corrected P value from the other modalities as replicative evidence
(P < 0.05 / the number of loci within the discovery modality). First, within each modality, we
categorized the genome-wide significant loci into four groups based on the level of multimodal
support (unique to discovery modality, replicated by modality 1, modality 2, or both), and
compared the mean GWAS P values across these groups. We observed that, as the number of
modalities with replicative support increases, the mean P value of association in the discovery
modality becomes stronger (Supplementary Table 4). For example, the mean (-log10) P value for
biomarker-derived liver fat loci with support from both DXA and metabolite modalites was 20.70
(median P = 1.2 x 10-14; group size = 110 loci). In comparison, the mean values were 17.70
(median P = 2.0 x 10-12; 150 loci) for loci with support from DXA only, 17.25 (median P = 7.8 x
10-13; 217 loci) for those supported by metabolites only, and 10.93 (median P = 8.6 x 10-10; 57
loci) for loci unique to biomarkers.

Next, we evaluated whether loci with multimodal support are more likely to be relevant for
clinical MASLD by assessing the proportion of loci with varying degrees of multimodal support
that demonstrated a directionally consistent effect on clinical MASLD. For instance, out of the
314 biomarker-derived liver fat loci (where we have the most loci), data were available for 203 in
the clinical MASLD GWAS summary statistics. Among these, 92, 142 and 70 had supporting
evidence from DXA, metabolites, and both DXA and metabolites, respectively (Fig. 4b). Of
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these, 81 (88%), 113 (80%) and 60 (86%) demonstrated a directionally consistent effect on
clinical MASLD while only 64% (25 of the 39 for which data was available in clinical MASLD
GWAS) of the loci that were unique to biomarkers showed a directionally concordant effect (Fig.
4b). Taken together, these results are consistent with the idea that loci with multimodal support
are more likely to be robust and biologically relevant.

Discussion
The advent of large-scale biobanks, spearheaded by initiatives like the UKB, has unlocked
numerous opportunities for genomics-based target discovery. In this study, we expanded the
genetic catalog of liver fat accumulation significantly, utilizing both deep (small sample size with
a high-resolution phenotype, e.g. DXA) and shallow (large sample size with low-resolution
phenotype, e.g. biomarkers) phenotypes, both imputed using ML. We identified a total of 321
independent loci associated with liver fat content, which is 45 times more loci than previously
reported. More importantly, our findings demonstrate that many of these newly identified loci are
likely clinically relevant to MASLD.

Given the extent of underdiagnosis in MASLD, the quantification of liver fat has emerged as a
crucial metric for assessing disease status. Imaging modalities, particularly MRI, have proven
effective not only in quantifying liver fat, but also revealing its genetic underpinnings. Both
traditional and ML-based MRI processing approaches have contributed to our understanding of
the genetic basis of liver fat accumulation3,7,10,44. However, relying solely on MRI as the primary
modality presents challenges, especially in large-scale biobanks like the UKB, where the
number of participants with MRI scans is limited. To overcome this limitation, our study
leveraged ML frameworks across a comprehensive dataset, integrating results from various
modalities to further expand our understanding of the genetic basis of liver fat accumulation.

Our ability to predict liver fat content from DXA with high accuracy is a considerable
improvement over prior studies. For instance, Bazzocchi et al. manually identified six
liver-associated regions of interest in DXA scans from 90 patients with hepatic steatosis and 90
healthy controls, and demonstrated the utility of DXA in evaluating hepatic steatosis, achieving
AUC of 0.8214. In another study, Bouchi et al. compared the DXA-derived android-to-gynoid
(A/G) ratio to liver attenuation index (LAI) assessed by abdominal computed tomography in a
small cohort of 259 patients with diabetes, observing a significant association15. More recently,
Tan et al. investigated MASLD risk in 10,865 non-obese and 16,487 obese individuals using
DXA-derived regional fat percentage scores16. Their multivariate logistic regression analysis,
accounting for age, race, BMI, and diabetic status, revealed increased MASLD risk with regional
fat percentage in both obese and non-obese subjects. While these studies demonstrated
significant statistical correlations between DXA-derived features and MASLD or MASLD-related
traits, they are limited by factors such as small sample size, reporting performance on training
sets without independent test sets, and the absence of reliable ground-truth (continuous)
measures, such as PDFF. The prediction performance we obtained using deep learning models
on much greater sample sizes, both for MASLD case-control status (AUC = 0.90) and especially
for liver fat percentage (R2 = 0.64) represent a major improvement, and suggests a potential for
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using DXA in clinical care or clinical trials to predict at-risk patients for treatment. Furthermore,
this study represents the first demonstration of using DXA-derived liver fat to recapitulate and to
further expand the genetic landscape of MRI-derived PDFF or clinically diagnosed MASLD.

While the phenotypic accuracy of liver fat predicted from biomarkers and metabolites was
modest, we hypothesized that an increased sample size could mitigate the noise in our
estimates. Supporting our hypothesis, these modalities - particularly biomarkers - not only
replicated a majority of known loci but also enabled us to significantly expand the genetic
landscape of liver fat accumulation. This highlights the potential of an ML-derived “shallow”
phenotype, at sufficient sample size, to identify meaningful genetic associations. While no prior
studies attempted to predict liver fat from biomarkers, Miao et al.17 used a subset of these
markers (n = 14), including liver enzymes (ALT, AST, AST/ALT and GGT), lipids (triglycerides,
cholesterol), diabetes-related traits (HbA1C, albumin, type 2 diabetes status), anthropometric
measures (waist circumference, BMI), and covariates (age, age2, sex) and created a synthetic
MASLD case-control cohort in the UKB to enable a GWAS, ultimately yielding 94 loci. We
noticed a strong correlation in effect estimates between the loci identified by Miao et al., for
biomarker-imputed MASLD status and our liver fat GWASs, particularly within the biomarker
modality (see Supplementary Fig. 8). Because the genome-wide summary statistics from Miao
et al. were not publicly available, we could not compare the effect estimates of all the loci that
we identified. Nonetheless, the increase in the number of discovered loci in our ML-imputed liver
fat GWAS compared to the recent ML-based GWAS by Miao et al. is consistent with increased
sample size and/or the utilization of a quantitative trait instead of binary labels (GWAS of 28,396
ML-imputed MASLD cases and 108,652 population controls versus GWAS of ML-imputed liver
fat in 262,927 participants).

To our knowledge, there have been no prior attempts to predict liver fat from metabolites at this
scale, and their potential for genetic discovery remains unexplored. In contrast to the relatively
strong performance observed in DXA and biomarker modalities, metabolite-predicted liver fat
exhibited limited precision and recall, particularly in identifying known MASLD genetic
associations. Noteworthy here is the inconsistency in the detected direction of effect at
well-known loci such as APOE and PNPLA3. However, these limitations could be attributed to
the combination of modest sample size, overall suboptimal prediction accuracy, and the
potential presence of modality-specific biases in capturing certain mechanistic components of
MASLD. Nonetheless, metabolite-derived liver fat replicated many genetic loci identified in other
modalities and demonstrated a strong genome-wide genetic correlation with other modalities
and clinical MASLD.

The strong genetic correlation between liver fat predicted across modalities and clinical MASLD
suggests that our ML-imputed liver fat captures similar disease genetics. This implies that a
majority of the loci associated with our ML-based predictions are highly likely to be relevant to
the clinical disease of interest. Additionally, the high concordance in the genetic architecture of
liver fat accumulation across modalities supports the contention that several genetic discoveries
can be replicated across modalities, bolstering our confidence in these associations as it would
diminish any potential modality-specific biases that may exist.
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To our knowledge, this is the first deliberate use of a multimodal approach, leveraging both
imaging (deep phenotype) and blood biochemistry (shallow phenotype) data, for the large-scale
prediction of liver fat content. This strategy not only robustly underscored the extent of
underdiagnosis of MASLD in the general population (such as the UKB) but also enabled the
largest GWAS of quantitative hepatic fat. Additionally, our multimodal approach successfully
demonstrated that ML-based phenotyping shows promise for improving both phenotypic
accuracy, as evidenced in our DXA-based findings, and scalability, as observed in our
biomarker-based findings. Our DXA findings, in particular, underscore the potential of employing
deep learning techniques on more widely available, non-invasive imaging modalities for
assessing hepatic steatosis. This reinforces the claim that imaging modalities often contain rich
and complementary information that is biologically relevant.

The 312 novel liver fat-associated loci discovered by ML-based phenotyping substantially
expand our knowledge of the underlying mechanistic processes of liver fat accumulation and
clinical MASLD. Of particular note were liver-fat associated variants in/near genes involved in de
novo lipogenesis (including GCKR, TRIB1, INSR and MLXIPL), one of the very well
characterized mechanistic causes of MASLD. Furthermore, our data offer the first human
genetic support for the role of FGF21 and its receptors in MASLD. Others have demonstrated
increased clinical success for therapeutic agents with human genetic support45–47. In light of the
positive findings of FGF21 in the clinical settings39, it was encouraging to see this association
become evident and likely lending additional credence to this therapeutic strategy.

Lastly, the utilization of data from diverse modalities not only mitigates modality-specific biases
but also provides a valuable form of cross-validation, enhancing confidence in the reproducibility
of the associations. Our examination of liver fat associations with multimodal support
underscores the robustness and biological relevance of the identified loci. The categorization of
loci from each discovery modality based on the level of support from other modalities revealed a
positive correlation between the number of supporting modalities and the strength of association
in the discovery modality. This observation strengthens the validity of our findings and suggests
that loci with multimodal support are more likely to be biologically significant. Furthermore, our
assessment of clinical relevance demonstrated that loci supported by multiple modalities exhibit
a higher likelihood of consistent effects on clinical MASLD. This aligns with the notion that these
loci, validated across diverse data sources, are more robust and potentially crucial in the context
of liver fat accumulation and clinically diagnosed MASLD. Overall, our findings provide valuable
insights into the biological underpinnings of liver fat content and its clinical implications.

Our study has certain limitations. First, alterations in certain biomarkers we considered may be a
consequence of hepatic steatosis rather than falling on the causal path, and some of the genetic
associations may be driven by these markers. However, our sensitivity analysis suggests that
our ML predictions capture the "aggregate trait" (liver fat) and are less likely to be driven by any
individual marker or a cluster of strongly correlated markers. Second, the variability in prediction
accuracy and sample size across modalities presents a challenge for conducting cross-modality
comparisons. Nevertheless, multiple lines of evidence indicate that our ML-based liver fat
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predictions show promise for genomic discovery in MASLD, including the differentiation of
MASLD subjects (PDFF measurements >5.5%) from non-MASLD controls, the replication of
known genetic loci, the identification of plausible novel genetic associations, and the
demonstration of strong shared genetic basis with clinically diagnosed MASLD. In summary, our
results highlight the value of incorporating multimodal approaches in ML-enabled genetic
studies, and demonstrate that orthogonal modalities can shed new light on the mechanistic and
pathobiological underpinning of MASLD. This approach could be extended to other conditions
and could be used to drive both new discoveries and to improve diagnostics.

URLs
- UK Biobank data fields: PDFF measures from data field 40061, DEXA from data field

40061, biomarkers from data category 18518, metabolites from data category 130
- GWAS implemented in Redun: https://github.com/insitro/redun

Data availability
Summary statistics for GWAS presented in this study will be made available upon publication.
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Tables

Modality # individuals # MASL (ICD) # liver fat > 5.56% # MASL and liver fat > 5.56

PDFF 23,658 430 (1.8%) 5,725 (24.2%) 248 (1.1%)

DXA 46,461 848 (1.8%) 11,565 (24.9%) 443 (1.0%)

Metabolites 82,138 2133 (2.6%) 20,225 (24.6%) 969 (1.2%)

Biomarkers 262,927 5,575 (2.1%) 75,653 (28.8%) 3,246 (1.2%)

Table 1: Diagnosis rate based on ICD10 (k76) versus imaging/biomarker based criteria

Table 2: Known loci and their sumstats from our modalities
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Supplementary Figures
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Supplementary Tables
Field name UK Biobank field

Alanine aminotransferase (ALT) 30620

Alkaline phosphatase (ALP) 30610

Apolipoprotein B (apoB) 30640

Aspartate aminotransferase (AST) 30650

AST/ALT Computed

Basal metabolic rate (BMR) 23105

Basophil count 30160

Body fat percentage 23099

Body mass index (BMI) 21001

C-reactive protein (CRP) 30710

Cholesterol 30690

Creatinine 30700

Cystatin C 30720

Diabetes diagnosed by doctor 2443

Eosinophil count 30150

Gamma glutamyltransferase 30730

Glycated hemoglobin (HbA1c) 30750

Haematocrit percentage 30030

Hemoglobin concentration 30020

Insulin-like growth factor-1 (IGF-1) 30770

Low density lipoprotein (LDL) 30780

Lymphocyte count 30120

Neutrophil count (ANC) 30140

Neutrophil to Lymphocyte ratio Computed

Platelet count 30080

Red blood cell (erythrocyte) count 30010

Standing height 50

Total bilirubin 30840

Triglycerides (TG) 30870

Trunk fat mass 23128

Trunk fat percentage 23127

Urate 30880

Urea 30670

Waist circumference 48

Weight 23098

White blood cell (leukocyte) count 30000

Whole body fat mass 23100

Supplementary Table 1: Final list of biomarkers used as input features to predict liver fat in the
biomarker modality.
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Ablation set name Field excluded

no_lipid_metabolism LDL direct, Cholesterol, Apolipoprotein B (apoB)

no_body_comp
Body mass index (BMI), Waist circumference, Trunk fat mass, Trunk fat
percentage, Weight, Body fat percentage, Whole body fat mass

no_liver_enzymes
Alanine aminotransferase (ALT), Aspartate aminotransferase (AST),
AST/ALT, Gamma glutamyltransferase

no_blood_comp
Red blood cell (erythrocyte) count, Haematocrit percentage,
Haemoglobin concentration

no_log_A1c Glycated hemoglobin (HbA1c)

no_log_triglycerides Triglycerides (TG)

no_log_total cholesterol Cholesterol

no_diabetes Diabetes diagnosed by doctor

no_log_ALP Alkaline phosphatase (ALP)

no_log_ANC Neutrophil count (ANC)

no_log_CRP C-reactive protein (CRP)

no_log_Cre Creatinine

no_log_IGF1 IGF-1

no_log_N/L Neutrophil to Lymphocyte ratio

no_log_WBC White blood cell (leukocyte) count

no_log_basal_metabolic_rate Basal metabolic rate (BMR)

no_log_basophils Basophil count

no_log_cystatin C Cystatin C

no_log_eosinophils Eosinophil count

no_log_lymphocytes Lymphocyte count

no_log_platelets Platelet count

no_log_total bilirubin Total bilirubin

no_log_urate Urate

no_log_urea Urea

Supplementary Table 2: Individual biomarkers or groups removed from the input feature set
during our ablation study
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Model LF VAT SAT GFAT

Left Half 0.59 0.95 0.96 0.94

Right Half 0.32 0.96 0.96 0.93

Top-Right Quadrant 0.33 0.94 0.95 0.84

Top-Left Quadrant 0.58 0.94 0.95 0.85

Bottom-Left Quadrant 0.31 0.86 0.91 0.91

Bottom-Right Quadrant 0.32 0.86 0.91 0.92

Supplementary Table 3: Results of the left-right masking, and quadrant-based subsetting
studies within the DXA modality

Discovery
modality

Unique to discovery
modality Supported by modality 1 Supported by modality 2 Supported by both 1 and 2

# loci
Median

P
Mean

(-log10) P # loci
Median

P
Mean

(-log10) P # loci
Median

P
Mean

(-log10) P # loci Median P
Mean

(-log10) P

DXA 0 NA NA 15 8.61E-10 12.75 15 8.61E-10 12.75 15 8.61E-10 12.75

Metabolites 0 NA NA 50 1.19E-10 15.33 55 5.88E-11 16.66 50 1.19E-10 15.33

Biomarkers 57 8.64E-10 10.93 150 2.03E-12 17.70 217 7.80E-13 17.25 110 1.20E-14 20.70

Supplementary Table 4: Mean P value of loci with varying degrees of multimodal support
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