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Abstract

Current predictive biomarkers generally leverage technologies such as immunohis-

tochemistry or genetic analysis, which may require specialized equipment, be time-

intensive to deploy, or incur human error. In this paper, we present an alternative

approach for the development and deployment of a class of predictive biomarkers,

leveraging deep learning on digital images of hematoxylin and eosin (H&E)-stained

biopsy samples to simultaneously predict a range of molecular factors that are rele-

vant to treatment selection and response. Our framework begins with the training of

a pan-solid tumor H&E foundation model, which can generate a universal featuriza-

tion of H&E-stained tissue images. This featurization becomes the input to machine

learning models that perform multi-target, pan-cancer imputation. For a set of 352

drug targets, we show the ability to predict with high accuracy: copy number ampli-

fications, target RNA expression, and an RNA-derived “amplification signature” that
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captures the transcriptional consequences of an amplification event. We facilitate ex-

ploratory analyses by making broad predictions initially. Having identified the subset

of biomarkers relevant to a patient population of interest, we develop specialized ma-

chine learning models, built on the same foundational featurization, which achieve even

higher performance for key biomarkers in tumor types of interest. Moreover, our mod-

els are robust, generalizing with minimal loss of performance across different patient

populations. By generating imputations from tile-level featurizations, we enable spatial

overlays of molecular annotations on top of whole-slide images. These annotation maps

provide a clear means of interpreting the histological correlates of our model’s predic-

tions, and align with features identified by expert pathologist review. Overall, our work

demonstrates a flexible and scalable framework for imputing molecular measurements

from H&E, providing a generalizable approach to the development and deployment of

predictive biomarkers for targeted therapeutics in cancer.

1 Introduction

Cancer is a highly heterogeneous disease, and despite significant advances in the discovery

and development of “precision” approaches to management, patients’ responses to targeted

treatments can still be highly variable, without an understanding as to why (see for example

[1, 2]). Growth in the development of targeted therapies has accelerated the use of predictive

biomarkers to identify the patients that are more likely to respond to a drug. Indeed, stud-

ies have shown that oncology trials that use biomarkers have a considerably higher success

rate [3, 4], with a nearly 5-fold increased likelihood of drug approval across all indications

combined, and a 12-, 8- and 7-fold improvement for breast cancer, melanoma and non-small

cell lung cancer (NSCLC), respectively.

Current predictive biomarkers generally leverage one of several assay types: immunohisto-

chemistry (IHC) on biopsy slides; genetic analysis, including karyotyping, fluorescence in

situ hybridization, and DNA sequencing; or transcript levels of a small set of genes, mea-

sured either via polymerase chain reaction (PCR) or (rarely) broad-based RNA sequencing.

The development and deployment of these approaches present significant challenges. First
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and foremost, these methods rely on specialized assays that are not universally available

across cancer centers, and even more so in resource-poor settings. Second, some of these

technologies such as IHC, require manual assessment by a trained individual, which might

increase variability and decrease reproducibility of the assay results. Third, they entail ad-

ditional cost and, even more importantly, require additional time that could postpone the

time to a diagnosis and the initiation of treatment. Moreover, while the sequencing-based

assays leverage technologies that have seen generally broad adoption and their use is fairly

standardized, a biomarker that utilizes targeted staining or probes, including IHC and PCR,

will usually require the development and extensive testing of specialized assays and reagents.

Current development paradigms and available technologies favor early selection of a biomarker,

at a stage where available data is generally based on poorly representative preclinical models

and/or underpowered phase 1 studies, both of which fail to capture the heterogeneity in hu-

man patient populations. This drives a tendency towards simple biomarkers that are largely

driven by human mechanistic understanding of the disease, usually either genetic aberrations

as measured by sequencing, or transcript/protein expression as measured by chemistry. As

a consequence, the labeled population is often overly restricted – reducing the set of patients

who benefit – or overly broad – subjecting a subset of patients to a drug that has limited

efficacy, while still carrying the risk of toxicity and delaying treatment with a potentially

more efficacious therapy.

In this paper, we present an alternative approach for the development and deployment of a

class of predictive biomarkers, leveraging deep learning on images of hematoxylin and eosin

(H&E)-stained biopsy samples to simultaneously predict a range of molecular factors that

are relevant to treatment selection and response. Such images are routinely collected and

processed for almost all solid tumor patients (world-wide), and are increasingly digitized

[5, 6, 7, 8]. As has been recently shown, these images are incredibly rich in information, and

enable automated disease detection, prognosis prediction, cancer grading, histological and

molecular subtyping, and customized treatment planning [9]. In particular, multiple papers

have demonstrated the ability to predict molecular biomarkers from H&E images, mostly
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focusing on therapeutically-relevant, recurrent somatic alterations [10, 11, 12, 13, 14, 15], but

more recently extending to other molecular modalities, including RNA expression, protein

abundance, and more [16].

Existing studies have predominantly utilized a per-task supervised learning framework, where

a single deep learning model is trained to predict a specific, defined biomarker in clinical

use, in a given type of cancer, directly from the H&E images. This approach limits the us-

able training data to individuals within a single cancer for whom the known biomarker has

been measured. In this work, we develop a novel multi-cancer, multi-biomarker prediction

framework that enables us to leverage the commonality of cancer mechanisms that manifest

both in the H&E slides and in the molecular readouts. Specifically, we begin by training

a pan-solid tumor H&E foundation model (similar to [9, 17, 18]; also see [19]), learning a

universal featurization of tissue H&E images.

We then use the foundational embeddings as input to downstream ML models. By predict-

ing multiple biomarkers simultaneously using a multi-task learning approach, our first set of

downstream models allow for exploratory analysis and broad discovery. To enhance inter-

pretability, these models predict on the basis of tile- rather than slide-level featurizations,

where a tile constitutes a small element of the far larger whole slide image. Having tile-level

predictions enables the generation and overlay of annotation maps, highlighting the regions

of a slide driving the model’s predictions. We show that despite being trained on bulk, rather

than spatially resolved, molecular data, our model is able to learn spatial variation in tumor

cell molecular markers that correlates with the regions identified as cancerous by blinded

pathologist review.

Our initially broad set of imputations allows for hypothesis-free investigations of which

biomarkers are relevant to which patient populations, and for the identification of biomarkers

that differentiate patient subgroups. Once a smaller set of biomarkers specific to the patient

population of interest has been selected from the discovery panel, we show that specialized

models can be trained, starting from the same foundational featurization, which can sur-
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pass the discovery model at predicting key biomarkers in targeted subgroups. This two step

process of imputing broadly then specializing on a more-focused subset enables both the

discovery of novel biomarkers and the optimization of their diagnostic performance.

To demonstrate the value of this method, we focus on biomarkers that are relevant to the

efficacy of drugs whose mechanism of action (MOA) is based on the differential recognition

and killing of cancer cells via the abundance of a particular protein target: antibodies (both

mono-specific and multi-specific), antibody-drug conjugates (ADCs), and T-cell engagers.

For relevant targets, we explore three potential imputed biomarkers: copy-number ampli-

fication (CNAs), RNA transcript level, and an RNA-derived signature capturing the effect

of a target’s CNA on the transcriptome. Across a large and diverse set of cancer types

and biomarkers, our methods deliver high-accuracy patient-specific predictions of molecular

readouts, both for continuous and dichotomized versions of these biomarkers. We also show

that our ability to provide accurate predictions is considerably greater for RNA transcript

levels than for CNAs, which further supports our use of RNA-derived signatures as proxies

for CNAs. As such, our work offers the opportunity to optimize the patient population for

a targeted therapy beyond the use of genetic alterations or IHC, but without going to the

other extreme of an overly broad label covering an excessively heterogeneous patient set.

Moreover, despite the fact that our imputation models were trained on bulk readouts, they

enable us to overlay spatially varying, tile-level predictions on top of the input histology

images, providing a lens of interpretability and enabling clinicians to gauge (e.g.) if pairs or

sets of biomarkers are spatially colocalizing within a tumor. Overall, our results support the

viability and ongoing exploration of using highly scalable molecular predictions from H&E

as a flexible and generalizable approach to the development and deployment of predictive

biomarkers for targeted therapeutics in cancer.
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2 Methods

2.1 Data Sets and Data Preparation

Data Sets

Our study employed data from The Cancer Genome Atlas (TCGA), a public research re-

source that includes genetic, molecular, and histological data from 11K patient and over

20K primary tumors across 33 cancer types [20]. Molecular and histological data from an

additional 2.6K patients were obtained from a commercially available multi-center cancer

research resource (cohort A).

Target Gene Identification

A commercial pharmaceutical database was queried to identify drugs whose therapeutic class

was labeled as antibody-drug conjugate (ADC), T-cell engager, or antibody, including both

mono-specific and multi-specific antibodies. For ADCs and T-cell engagers, drugs at any

stage of development were retained, while for antibodies (a larger class), drugs whose de-

velopment had ceased were excluded. The overall list of drugs was filtered to those with

specified targets. Each remaining drug was mapped to a HGNC gene symbol, and the union

of all gene symbols was taken, resulting in 352 unique targets.

Copy Number Amplification Calling

Two approaches were utilized to identify genes with focal amplifications based on whole

exomes from tumor specimens: GISTIC2 [21] (v2.0.22), which estimates copy number relative

to a matched normal sample, and Sequenza [22] (v3), which estimates the absolute copy

number. A gene was designated as focally amplified if it received a GISTIC2 score of 2, or

if it exhibited a copy number greater than twice the ploidy based on Sequenza.
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Expression Data Preprocessing

Augmented TCGA STAR+RSEM gene counts for 11,155 samples, generated from the Ge-

nomic Data Commons (GDC) [23] standard pipeline and aligned to GRCh38, were down-

loaded from the GDC portal on 07/13/2023. A corresponding STAR+RSEM gene count

matrix for 2,733 samples was prepared in cohort A. Transcript per million (TPM) matrices

were concatenated, filtered to genes with non-trivial expression (requiring TPM > 1 in at

least one subject), and subset to protein-coding genes from Gencode V43 [22], resulting in

19,421 unique genes. The resulting TPM matrix was log2-transformed then quantile normal-

ized via the limma voom function [24] in R [25]. Subsequently, edgeR’s removeBatchEffects

function [26] was applied to regress out the cohort effect (TCGA vs. cohort A). The resulting

log2(TPM) matrix was assessed for possible batch effects from sequencing instrument and

sequencing center via principal component analysis and lmfit on potential batch drivers.

No other significant batch effects were identified. This joint expression matrix was used as

input for downstream analyses.

Histology Preprocessing

A total of 30,032 hematoxylin and eosin (H&E)-stained whole slide images (WSIs), corre-

sponding to 11,428 unique patients, were downloaded from the GDC. The tissue-bearing

foreground of the image is extracted, and low-frequency super-cellular artifacts such as tis-

sue folds, out-of-focus regions, and pen markings removed, using WSI Spectral Thresholding

for Artifact Removal (WSI-STAR), an internally-developed histology slide quality control

procedure currently under review. To account for differences in staining protocols across

studies centers, color channels were normalized using Macenko’s method [27]. Each slide

was divided into non-overlapping 256 × 256 tiles at a resolution of 1 µm per pixel (MPP),

and tiles were filtered to those with at least 90% foreground, resulting in 180M individual

tiles. WSIs for 1,000 patients from cohort A were processed in the same manner, resulting

in 8M tiles.
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2.2 Amplification Signatures

Differential Expression Analysis

Differential expression analysis between copy-number amplified and copy-number normal (i.e.

diploid) patients was performed using the limma voom package in R. For each amplification,

limma models (∼ CNA status + cohort) were fit to identify deferentially expressed genes

with a false discovery rate (FDR)-corrected p-value (i.e. q-value) < 0.01 and an absolute log2

fold change > 0.3. Such models were fit jointly to the TCGA and cohort A data sets. No

significant differences were observed in a sensitivity analysis where the TCGA and cohort A

data sets were analyzed separately.

Amplification Signature Construction

An expression signature for each amplification was constructed by taking the dot product

of the observed expression levels of differentially expressed genes with a set of weights. In

detail, for amplification k, suppose there were Jk differentially expressed genes. Let Gij

denote the observed expression level of gene j in subject i. The signature for subject i with

respect to the kth amplification was:

Sik =

Jk∑
j=1

wjkGij.

The weight wjk was the sign of the log2 fold change of gene j in amplification k scaled

by the absolute log10 q-value. This scheme affords more weight to genes where there is

greater evidence of differential expression. A more positive signature Sik indicates that

subject i has an expression profile consistent with amplification k, even if that subject did

not have amplification of k based on copy number analysis. Below, we develop models to

impute expression levels and amplification signatures. While in principle the amplification

signature could be calculated from imputed expression levels, in practice better performance

is obtained by developing models to directly impute the amplification signature (using labels

derived from observed expression levels).
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2.3 Machine Learning Analysis

Histology Embedding Generation

We trained a vision transformer [28] (ViT)-type model on 3M randomly selected 256× 256

1MPP tiles from TCGA using the self-supervised distillation with no labels (DINO) [29]

algorithm. Briefly, given a collection of unlabeled images, DINO trains a student network

(i.e. the ViT) to match the output of a teacher network. This task is made more challenging

by the fact that the student and teacher networks receive different “views” of the input image.

Training was monitored by periodically evaluating the utility of embeddings extracted from

the teacher network for several downstream tasks, including cancer subtype classification

and overall survival prediction, within an independent validation set of 100K tiles. Tile-level

embeddings generated by the final model served as the inputs to downstream modeling tasks.

Biomarker Foundation Model Training

Three sets of neural network models were trained via 8-fold cross validation to predict gene

expression, copy number amplification, and gene signatures from H&E tile embeddings of

dimension 768. The training was performed in pytorch (2.1.0). Two major architecture

classes were used. The first, a 4-layer sequential network consisting of linear layers inter-

spersed with ReLU and dropout layers, is reproduced below. Training and evaluation data

was fed to the model in batches of size 2000.

net = torch.nn.Sequential(

torch.nn.Linear(768, 512),

torch.nn.ReLU(),

torch.nn.Dropout(0.6),

torch.nn.Linear(512, 256),

torch.nn.ReLU(),

torch.nn.Dropout(0.6),

torch.nn.Linear(256, 256),

torch.nn.ReLU(),

torch.nn.Dropout(0.6),
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torch.nn.Linear(256, N_GENES))

The second class of model extended the first to include cross-tile attention, building on the

transMIL [30] architecture, using batch size of 1 with gradient accumulation for 400 batches.

Optimization was performed using Adam [31], starting with a learning rate of 1e-4, which

decayed exponentially (gamma=0.96) after 2 consecutive epochs of no improvement. An early

stopping threshold of 3 or 4 (depending on the model) consecutive epochs with no improve-

ment in validation loss was utilized to indicate training completion.

For regression tasks (predicting target expression or the amplification signature), the ob-

jective was Huber loss with delta=1.0. For classification tasks (predicting copy number

amplification, elevated target expression, or elevated amplification signature), the objective

was binary cross entropy loss, with the minority (positive) class inversely weighted by class

prevalence. When performing classification for elevated target expression or amplification

signature, the positive class was defined as those patients exceeding the 95% percentile (p95).

Label smoothing [32] was applied during training, with p0-p50 assigned a label of 0; p50-p90

a label of 0.1; p90-p95 a label of 0.9; and p95-p100 a label of 1.0. Label smoothing was not

possible in the case of CNA labels, which are intrinsically binary.

Biomarker Specialized Model Training

Building on the promising results from the expression and signature classification foundation

models, specialized models were trained to predict MET expression and signature within the

NSLC and COAD cohorts. Training was performed on tile-level H&E embeddings using the

architecture:

net = torch.nn.Sequential(

torch.nn.Linear(768, 32),

torch.nn.Tanh(),

torch.nn.Linear(32,1))

Inputs to the model were restricted to H&E data from the cohort of interest (NSLC or
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COAD), keeping the same subject splits as in the foundation models to avoid contamina-

tion, but pruning out training and evaluation subjects from other cohorts.

Training was performed via a binary cross entropy loss using the Adam optimizer with a

weight decay of 1e-4, a learning rate 0.001, and early stopping enabled after three con-

secutive epochs of no reduction in evaluation loss. Binarization and label smoothing was

performed as described above for the foundation models.

Assessing Model Performance

Model performance was evaluated via an 8-fold cross-validation procedure, where the model

was trained on 7 folds and the evaluated on the held-out fold. For regression tasks, the

evaluation metrics included the Pearson and Spearman correlations. For classification tasks,

the evaluation metrics included the area under the precision-recall curve (AUPRC) and the

area under the receiver operating characteristic (AUROC). While the models emit tile-level

predictions, tiles are clustered within patients, and the labels are patient level. Performance

metrics were aggregated from tile to patient level by taking the mean. For pan-cancer analy-

ses, performance is assessed across all patients, whereas for stratified analyses, performance

is assessed first within each cancer type, than averaged across cancer types. The stratified

analysis restricts to cancer types with at least 100 available patients to ensure the perfor-

mance metrics can be estimated with reasonable precision. Due to the low prevalence (e.g.

< 1%) of certain CNAs, for stratified CNA analyses, on targets where at least 3 patients

harbored CNAs in a given cancer type are included.

2.4 Survival Analysis

Curated OS labels for patients in TCGA were obtained from [33]. Within cohort A, therapy-

specific OS was defined as the time from therapy onset to the patient’s death. In instances

where no death report was available, patients were censored at the time of last follow-up.

Analyses were performed in cohort A, where more-detailed clinical data were available. Haz-

ard ratios quantifying the association between OS and predicted biomarkers were estimated
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via the Cox proportional hazards model [34], adjusting for the age at diagnosis, age at dis-

ease staging, pre-treatment stage, sex, cancer type, metastatic status, number of unique prior

therapies, and time from diagnosis to treatment with the therapy of interest. Patients were

partitioned into two groups (“high” and “low”) on the basis of their amplification signature,

but without reference to their survival. The significance of differential survival between these

groups was assessed via the HR from the Cox model. Adjusted Kaplan-Meier curves were

calculated using the direct standardization approach [35, 36].

3 Results

3.1 Biomarker Prediction

CNA Prediction

Copy number amplifications (CNAs) were called for each of 352 target genes (hereafter, “tar-

gets”). Within the overall cohort (n = 14, 007), the median amplification prevalence was

1.1% (range: 0.2% to 7.8%; also see Supplemental Figure 1). We developed multi-task,

binary-outcome models to simultaneously predict CNA status for all 352 targets. The inputs

to these prediction models were embeddings of 256 by 256, 1 µm per pixel tiles from digital,

whole-slide histopathology images (WSIs). Patient-level predictions are obtained by taking

the mean across all tiles within a patient’s WSIs. Here and throughout, patient predictions

are generated using an 8-fold cross-validation (CV) procedure such that the model which

generates a patient’s prediction does not see that patient’s data during training.

Figure 1 presents the distribution of AUROCs, across targets, and mean AUROC in each of

26 cancer types with at least 100 patients. Due to the low prevalence of certain CNAs, when

assessing performance within cancer types, metrics are only reported for those targets where

at least 3 patients harbored amplifications. The mean AUROC across targets is summarized

in Table 1. The heatmaps in Supplemental Figure 2 present, for each target, the area

under the receiver operating characteristic (AUROC) for predicting CNAs, stratified by

cancer type. The pan-cancer analysis evaluates performance across all available patients.
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The stratified analysis evaluates performance separately in each cancer type, then takes the

mean across cancer types. The distinction between these approaches is that the stratified

analysis evaluates how well the model learns to differentiate CNA risk within cancer types,

whereas the pan-cancer analysis examines how well the model learns to differentiate risk both

within and between cancer types. To demonstrate the within-cancer-type performance, the

performance within two specific cohorts of interest, breast and colorectal, is also presented.

Table 1: Overall performance for biomarker prediction from digital histopathol-
ogy. Performance is evaluated at the patient level in a held-out evaluation set and averaged
across 8 cross-validation folds. The 3 types of biomarkers are copy number amplification
(CNA), target expression level (RNA), and amplification signature score (SIG). For binary
classification, the area under the receiver operating characteristics (AUROC) is shown. For
regression, Spearman correlation between the observed and predicted values is shown.

Cohort N Biomarker AUROC Spearman
Pan-cacner 14,007 CNA 0.734
Pan-cacner 14,007 RNA 0.853 0.628
Pan-cacner 14,007 SIG 0.897 0.665
Stratified 12,328 CNA 0.680
Stratified 12,328 RNA 0.719 0.318
Stratified 12,328 SIG 0.779 0.333
Breast 1,455 CNA 0.627
Breast 1,455 RNA 0.731 0.372
Breast 1,455 SIG 0.773 0.418
Colorectal 629 CNA 0.707
Colorectal 629 RNA 0.720 0.324
Colorectal 629 SIG 0.724 0.293

Expression Prediction

Previous work has associated copy number amplification with differential gene expression

across cancer types [37]. Supplemental Figure 4 presents the differences in expression

between patients with and without CNAs across 347 targets with available RNA. Of these,

207 (59.7%) were significantly differentially expressed, the vast majority (197/207; 95.2%)

having higher mean expression in patients with amplifications. We hypothesized that, by

providing a continuous supervisory signal, modeling RNA would enable us to train more

accurate biomarker prediction models.
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We therefore developed multi-task, continuous-outcome models to simultaneously predict,

on the basis of histopathology tile embeddings, the expression levels for 347 of the 352 tar-

gets with available RNA. Figure 2 compares the observed and predicted expression matrices

pan-cancer. Analogous matrices subset to breast and colorectal cancer are presented in Sup-

plemental Figure 5. Figure 3 presents the distribution of correlations, across targets,

between a patient’s observed and predicted expression levels, and the mean correlation by

cancer type. Specifically, patient level predictions were first generated via 8-fold CV, then

for each target, the correlation between the observed and predicted expression levels was

calculated across patients. Pan-cancer, the mean cross-validated Spearman correlation was

62.8%, and stratifying by cancer type, the mean Spearman correlation was 31.8% (Table

1). As expected, correlations are higher in the pan-cancer analysis, where the model benefits

from learning to distinguish differences both within and between cancer types. Supplemen-

tal Figure 9 presents the correlations for all targets broken down by cancer type.

To enable comparison with the binary CNA prediction task, we dichotomized the expression

of each target at its 95th percentile (p95), and developed multi-task binary-outcome models

to predict whether a patient’s expression exceeded the p95, suggesting that the target was

highly expressed. Supplemental Figure 6 presents results for all targets stratifying by

cancer type, and Figure 1 presents the distributions and means for each cancer type. Con-

sistent with our hypothesis, elevated target expression was generally more predictable than

CNA status. As shown in Table 1 the pan-cancer AUROC increased from 73.4% to 85.3%,

and the stratified AUROC increased from 70.0% to 71.9%.

Amplification Signatures

As discussed above (see Supplemental Figure 4), there is only modest concordance be-

tween CNA and differential expression. We reasoned that a broader transcriptional signature

capturing changes in expression beyond those of the target gene alone might provide a better

predictor of target CNA. For each of the 352 targets, we identified all genes differentially

expressed between patients with and without amplifications, and utilized the differentially

expressed genes to construct an RNA-based amplification signature (for 1 gene, no differen-
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tially expressed genes were identified). The amplification signature is a linear combination

of expression levels weighted by the magnitude of evidence for differential expression (see

Section 2.2). Signatures were min-max normalized to the unit interval for ease of compar-

ison. Supplemental Figure 18 presents the distribution of signature scores in patients

with and without amplifications. Relative to those without amplifications, the mean sig-

nature scores of patients with amplifications were 46.3% higher (Supplemental Table 3).

For all 351 amplification signatures, there was at least nominally significant evidence, via

the Wilcoxon rank-sum test, of differential scores between patients with and without CNAs

(median P-value: 1.4 × 10−27). Supplemental Figure 19 depicts the distribution of cor-

relations, across targets and pan-cancer, between the amplification signature and expression

of the amplified gene. In general, the correlation was low, with median R2 of only 2.0%

(Supplemental Table 4).

Building on our work predicting target expression, we developed multi-task, continuous-

outcome models, analogous to our expression models, for predicting the 351 amplification

signatures from histopathology tile embeddings. Figure 3 presents the distribution of corre-

lations, across targets, between a patient’s observed and predicted amplification signatures,

and the mean correlation by cancer type. As shown in Table 1, predictions of the am-

plification signature were, on average, more accurate than predictions of target expression.

Pan-cancer, the mean cross-validated Spearman correlation was 66.5%, and stratifying by

cancer type, the mean Spearman correlation was 33.3% (Table 1). Supplemental Figure

9 presents the correlations for all targets broken down by cancer type.

We likewise created a binary prediction task, wherein the goal was to predict whether a

patient harbored an elevated amplification signature, by dichotomizing each amplification

signature at its p95. The distribution and mean AUROC across target, stratified by cancer

type, are shown in Figure 1. Pan-cancer, the mean AUROC was 89.7%, and stratified by

cancer type, the mean AUROC was 77.9% (Table 1). Figure 4 presents the number of tar-

gets predicted with an AUROC exceeding a given threshold for the CNA, target expression,

and amplification signature binary classification tasks, and Supplemental Table 2 sum-
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marizes the counts exceeding various cutoffs. For example, CNAs in 142 targets, elevated

expression in 339 targets, and an elevated signature in 335 targets can be predicted with

AUROC exceeding 0.75, pan-cancer. The corresponding counts for the stratified analysis

are 25, 97, and 201 for CNA, expression, and signature, respectively. Note that achieving

an AUROC of 0.75 or greater in the stratified analysis is a considerably higher bar, as this

requires the model to differentiate risk within each cancer type, and do so effectively across

many cancer types.
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Figure 1: Cross-modality comparison of binary digital biomarker prediction qual-
ity, stratified by cancer-type. Performance is evaluated at the patient level in a held-out
evaluation set and averaged across 8 cross-validation folds. Metrics are calculated sepa-
rately in each cancer type with ≥ 100 patients. Within cancer types, CNA results are only
presented for targets where at least 3 patients harbored an amplification. The mean and
distribution are shown across up to 352 target genes. For CNA, the task was to predict
whether the patient harbored an amplification. For target expression (RNA) and the ampli-
fication signature (SIG), the task was to predict whether the patient’s expression/signature
level exceeded the 95th percentile. Error bars are 95% confidence intervals.
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Figure 2: Comparison of observed expression and signature matrices with those
predicted on the basis of histopathology. Predictions are generated via cross-validation,
such that a patient is not used to train the model that generates their predictions. Left is
the observed gene expression or signature matrix. Right are prediction based on digital
pathology. The color within the heatmap describes the level of expression or magnitude of
the amplification signature. The color bar on the left of each plot annotates cancer type.
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Figure 3: Cross-modality comparison of continuous digital biomarker prediction
quality, stratified by cancer-type. Performance is evaluated at the patient level in a
held-out evaluation set and averaged across 8 cross-validation folds. Metrics are calculated
separately in each cancer type with ≥ 100 patients. The distributions are shown across up
to 352 target genes. For RNA, the task is to predict the normalized log2 expression level.
For SIG, the task is to predict the min-max normalized amplification signature.
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Figure 4: Count of targets with AUROC exceeding a given threshold for the
pan-cancer and stratified binary classification task. Performance is evaluated at
the patient level in a held-out evaluation set and averaged across 8 cross-validation folds.
For the pan-cancer evaluation (left), the AUROC is calculated across all patients. For the
stratified evaluation (right), the AUROC is calculated separately within each cancer type,
then averaged across cancer types. For copy number amplification, the task was to predict
whether the patient harbored an amplification. For target expression and the amplification
signature, the task was to predict whether the patient’s expression/signature level exceeded
the 95th percentile.
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3.2 Use Cases

We next sought to assess the utility of our model in a number of distinct applications. Since

our study design was based on a set of therapeutically relevant targets, we took a target-

driven perspective in exploring use cases.

MET Case Study

We began by looking at MET, a target for which there are multiple therapies available and

under development. Copy number alteration of MET has been associated with worse over-

all survival across tumor types [38], and specifically in non-small-cell lung cancer [39, 40].

The standard assessment of whether a patient is eligible for a MET -targeting therapy uti-

lizes an IHC-based biomarker; indeed, the ADC telisotuzumab vedotin has obtained FDA

Breakthrough Therapy Designation for patients with high levels of MET overexpression

[41]. However, MET IHC has been shown to have poor concordance with MET CNA [42].

Additionally, it is well established that mechanisms other than CNA that drive MET over-

expression often also give rise to worse outcomes [43], and are generally much more common

than amplification events. For example, in NSCLC, MET overexpression is found in 25% –

75% of cases, whereas amplification occurs only in about 4% [43]. Therefore, there is ample

opportunity for the development of better biomarkers for identifying patients eligible for

MET -targeting therapies.

The prevalence of MET amplifications in our overall cohort is 1.8%. We first investigated

the performance of our core models, as described above, predicting MET overexpression

and an elevated MET amplification signature. As shown in Figure 5(a), pan-cancer, we

achieved an AUROC of 0.91 for predicting MET overexpression, and of 0.84 for predicting an

elevated amplification signature. Within NSCLC, the pan-cancer model achieved AUROCs

of only 0.69 and 0.78 for predicting overexpression and an elevated amplification signature

respectively.
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We reasoned that we could further improve the performance within these specific cohorts

by specializing our models, that is, training the predictive component of the model on these

specific cohorts. Indeed, when models were trained within NSCLC patients specifically, we

obtained an AUROC of 0.58 for predicting MET amplification, 0.79 for overexpression, and

0.84 for predicting an elevated amplification signature. Our model was also able to predict

quantitative MET expression with correlation of 0.38. In work done contemporaneously with

ours, Ingale et al [44] similarly predict MET overexpression in NSCLC; they were able to

train on a much larger cohort of NSCLC patients – 605 MET+ patients versus 38 for us –

but used the typical supervised training approach with a single-task model. Their method

achieved an AUROC of 0.74 (compared to our 0.79 for overexpression prediction above),

but in an artificially balanced test cohort, with equal numbers of cases and controls; in this

regime, our approach provided an AUROC of 0.87. We also tested whether our biomarkers

have the potential to increase the set of patients where we predict increased MET activity.

Indeed, whereas MET CNA identified only 38 NSCLC patients, MET RNA overexpression

identified 72 patients, and the MET amplification signature identified 88 patients.

Our pan-cancer approach can also be used to identify new opportunities for biomarker de-

ployment. In particular, our analysis revealed a strong performance in predicting MET in

colorectal cancer. Although MET amplification is rare in colorectal cancer [45, 46], previous

work has noted that MET overexpression is more common [47, 48], and is prognostic of

poorer survival outcomes [49]. We therefore similarly trained a specialized model for col-

orectal cancer; as shown in Figure 5, this model achieves an AUROC of 0.81 for predicting

MET overexpression, and of 0.85 for predicting an elevated amplification signature.

TACSTD2 Case Study

Antibody-drug conjugates that target the protein encoded by TACSTD2, known as tro-

phoblast antigen 2 (TROP2), are under active development by several companies. Thus far,

Trodelvy (sacituzumab govitecan) has been approved in urothelial cancer [50] and breast

cancer (HR+HER2- and TNBC) [51, 52, 53] with active development in NSCLC [54], among
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(a) MET case study

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MET signature foundation model, pan-cancer
AUROC=0.84
MET expression foundation model, pan-cancer
AUROC=0.91
MET signature foundation model, LUAD/LUSC
AUROC=0.78
MET expression foundation model, LUAD/LUSC
AUROC=0.69
MET signature foundation model, COAD
AUROC=0.92
MET expression foundation model, COAD
AUROC=0.75

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MET signature LUAD/LUSC specialized,
AUROC=0.84
MET expression LUAD/LUSC specialized,
AUROC=0.79

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MET signature COAD specialized,
AUROC=0.85
MET expression COAD specialized,
AUROC=0.81

(b) TACSTD2 case study
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Figure 5: Tailored prediction of overexpression and amplification for MET and
TACSTD2. Left shows performance of models trained to predict overexpression or an
elevated amplification signature from the foundation model’s embeddings. Center shows
the performance when the model is further specialized for prediction within NSCLC. Right
shows performance of a model trained for colorectal cancer prediction, in the case of MET,
and pancreatic cancer prediction, in the case of TACSTD2.

other indications. Similarly, Dato-DXd (datopotamab deruxtecan) is actively being pursued

in breast cancer [55] and NSCLC [56]. As an oncology target, TROP2 is of interest due to
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its expression in many solid tumors and limited expression in normal tissues [57]. Moreover,

multi-study meta-analyses have shown that over-expression of TACSTD2 was associated

with poor overall survival and reduced disease-free survival [58].

Leveraging our pan-cancer approach, we find that elevated TACSTD2 expression was pre-

dicted pan-cancer with an AUROC of 0.85, in BRCA with an AUROC of 0.63, and in NSCLC

with an AUROC of 0.75, as expected. However, the pan-cancer foundation model also sug-

gests predictive power in several additional cancer types, including pancreatic (AUROC:

0.79), stomach (AUROC: 0.89), and thyroid (AROC: 0.73). Previous work has suggested

that TROP2 over-expression occurs in these cancer types [59]. Others have also recently

reported preclinical evidence of tumor reduction using another TROP2-targeting ADC in

xenograft mouse models of pancreatic cancer [60], consistent with our finding.

We further investigated the potential for TACSTD2 biomarkers by developing specialized,

cohort-specific over-expression and signature models in NSCLC and pancreatic cancer. Per-

formance of the resulting model is shown in Figure 5(b). In both cases, specialization

improved performance at signature prediction at the cost of some performance in expression

prediction. In NSCLC, the AUROC for signature prediction increased from 0.75 to 0.82,

and in pancreatic from 0.89 to 0.90. Meanwhile, for over-expression prediction, the AUROC

decreased from 0.79 to 0.72 for NSCLC, and 0.79 to 0.78 for pancreatic. In this situation,

we could retain the pan-cancer model for predicting over-expression, while deploying the

specialized models for amplification signature prediction.

Cabozantinib Case Study

A key clinical application of our approach is the ability to use a biomarker to stratify pa-

tients into responders and non-responders. Unfortunately, availability of clinical outcomes

in our cohorts is limited, especially for targeted therapies, which are often relatively new

to clinical practice. To increase the set of hypotheses we could examine, we expanded our

evaluation beyond biologics to consider any targeted therapies against our selected targets
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for which there were a sufficient number of patients (n > 30) to properly power our analysis.

This resulted in 38 (indication, target) pairs. We then tested for associations between im-

puted signatures and overall survival (OS) after adjusting for age at diagnosis, age at disease

staging, pre-treatment stage, sex, cancer type, metastatic status, number of unique prior

therapies, and time from diagnosis to treatment with the therapy of interest.

Our analysis revealed a significant association between our VEGFR2 (KDR) amplification

signature and OS among cabozantinib-treated patients (hazard ratio [HR]: 0.087; 95% CI,

0.032 to 0.237; Bonferroni adjusted P = 7.0× 10−5). The covariate-adjusted Kaplan-Meier

curves comparing patients with low versus high VEGFR2 signature scores are presented in

Figure 6. Importantly, no outcome data (for cabozantinib or any other drug) were used

to inform the design of the amplification signature. For comparison, the HR for the MET

signature among the same patient group was 1.39 (95% CI, 0.573 to 3.351; P = 0.47). An

analysis of measured VEGFR2 expression level also suggested an association with improved

OS among patients treated with cabozantinib (HR: 0.727), although the evidence was in-

conclusive (P = 0.10), illustrating the increased power of our imputed signatures. Notably,

the VEGFR2 signature (measured or imputed) was not correlated with improved OS in

372 cohort A RCC patients more broadly, suggesting that the clinical benefit is specific to

cabozantinib.

Cabozantinib is a broad-ranging tyrosine kinase inhibitor (TKI) with activity against MET,

RET, AXL, VEGFR2, FLT3, and c-KIT [61], and it has been approved for treatment of

renal cell carcinoma (RCC), medullary thyroid cancer, and hepatocellular carcinoma [62].

Of the 31 patients treated with cabozantinib, a majority (22/31) were diagnosed with re-

nal cancer. VEGF-A is a known prognostic marker in metastatic RCC, and high levels

of VEGF-A are associated with poorer OS and progression-free survival among patients

treated with sunitinib, another TKI [63]. A previous study demonstrated that markers of

angiogenesis microvascular density and mast cell density were associated with improved out-

comes in metastatic clear cell RCC; however, these did not seem to be predictive of efficacy

for cabozantinib compared to everolimus (an mTOR inhibitor) [64]. Despite this finding,
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given the known relationship of RCC biology with VEGF signaling and the proposed MOA

of cabozantinib, the highly significant association between our VEGFR2 signature and OS

among cabozantinib-treated patients could be of interest for future biomarker development,

as well as providing suggestive evidence for VEGF as a mechanism by which cabozantinib

derives efficacy in RCC.

HR: 0.087 [0.032−0.237]
p = 1.85e−06
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Figure 6: Covariate-adjusted Kaplan-Meier curves for overall survival among pa-
tients treated with cabozantinib. Patients were partitioned into two groups (“high” and
“low”) on the basis of their VEGFR2 (KDR) amplification signature, but without reference
to their survival. The reported hazard ratio (HR) and p-value, comparing patients in the low
vs. high VEGFR2 signature groups, were estimated via a Cox model, adjusting for clinical
covariates. The KM curves were adjusted for covariates using direct standardization.

Interrogating Spatial Heterogeneity

An important attribute of our model is that it generates biomarker predictions at the resolu-

tion of individual tiles. This provides us with the ability to generate spatial gene expression

predictions across WSIs. Specifically, the model makes predictions for each biomarker and

for each tile, allowing us to create a synthetic annotation on top of the WSI, in which the

biomarker predictions are overlaid on each tile within the slide. This capability can be useful
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in a number of ways. First, it “opens the black box” by providing a human expert the abil-

ity to interrogate the process that gave rise to the results. Second, it creates a view on the

spatial distribution of multiple biomarkers, providing considerable insight into tumor archi-

tecture and intra-tumor heterogenity. Indeed, since these imputations are derived directly

from the H&E, this capability supports a form of “label-free” staining across a very large

set of molecular readouts.

Figure 7 shows some examples of these synthetic overlays, localizing HER2 expression in

breast cancer and MET expression in colorectal cancer. To provide a baseline for these

predictions, we also asked our expert pathologist (B.D.) to annotate a random sample of

WSIs from patients with and without amplifications while blinded to all model predictions.

The fact that increased expression coincides with regions annotated as cancerous aligns with

clinical knowledge, and suggests that the model has learned to distinguish between tumor

and normal tissue. Importantly, the model has learned this distinction while trained only on

bulk, not spatially resolved, expression data. Supplemental Figures 20 and 21 provide

an alternate view of these results in which the target expression and amplification signature

predictions are juxtaposed.

Since the molecular labels are all synthetically generated, we can also derive multiple la-

bels for the same image. Figure 8 and Supplemental Figure 22 provide examples of

co-expression prediction for HER3 plus MET and TOP1 plus TOP2A, respectively. The

differences in the spatial expression predictions of these target pairs underscore that the

model is learning more nuanced expression information than whether or not a tile falls

within a cancerous region of the slide.
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(a) Target Expression

(b) Amplification Signature

Figure 7: Comparison of expression/signature predictions with expert patholo-
gist annotations. The pathologist was blinded to the predictions. Although the expres-
sion/signature models provide tile-level predictions, they were trained only on bulk, not
spatially resolved, information. The coincidence of increased expression level and amplifi-
cation signatures with regions annotated as cancerous therefore provides evidence that the
model has learned to differentiate tumor and normal tissue.
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Figure 8: Coexpression of HER3 and MET in colorectal cancer alongside pathol-
ogist annotations. The pathologist was blinded to the predictions. Although the expres-
sion/signature models provide tile-level predictions, they were trained only on bulk, not
spatially resolved, information.
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3.3 Machine Learning Modeling Insights

Table 2: Transportability of binary expression and amplification predictions across
data sets. Reported are the mean AUROCs across targets. The within dataset results were
obtained via cross-validation, training and testing with data from both TCGA and cohort
A. The across dataset results were obtained by training on TCGA only then evaluating on
cohort A only.

Biomarker Cohort Across Dataset Within Dataset Relative Change (%)
RNA Pan-cancer 0.742 0.853 -13.0
RNA Breast 0.676 0.731 -7.5
RNA Colorectal 0.689 0.720 -4.4
SIG Pan-cancer 0.797 0.897 -11.2
SIG Breast 0.777 0.773 0.5
SIG Colorectal 0.786 0.724 8.5

Transportability Across Cohorts

A critical aspect of machine learning models is the extent to which they generalize outside

of the distribution on which they were trained. This generalization is important in assessing

the robustness of the approach, i.e., in not overfitting to the specifics of a single data set. It

is also critical from a clinical deployment perspective, increasing confidence that the model

will behave when applied in a new clinical setting.

Table 2 presents AUROCs from an experiment where we trained multi-task binary outcome

models to predict elevated expression and amplification signatures using data from TCGA

only, then evaluated on patients from cohort A only. Results are shown pan-cancer and

within breast and colorectal cancer. Stratified results are not presented as the set of cancers

available in cohort A only differs from the set available in TCGA + cohort A, and the results

would not be comparable with those presented elsewhere. Although significant predictive

power is retained, some decrease in performance is always expected when applying a model

in a new dataset. Surprisingly, for breast and colorectal cancer, elevated signature predic-

tion improved across datasets, perhaps suggesting these cohorts are more heterogeneous in

TCGA than in cohort A.
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Table 3: Model architecture experiments. Evaluations were performed pan-cancer via
8-fold cross validation. The reported metric is the mean patient-level correlation across
targets. (a) Considers whether the model should receive as input a separate embedding for
each tile or the average embedding across tiles. (b) Considers whether to make tile-level
predictions independently or to incorporate a spatial attention mechanism. (c) Considers
whether to predict expression levels transcriptome-wide then subset the targets of interest,
predict expression levels of the targets only, or train separate models for each target.

(a) Tile Averaging

Average tiles Spearman
No 0.628
Yes 0.584

(b) Attention

Tile attention? Spearman
No 0.628
Yes 0.404

(c) Multi-tasking

Targets Spearman
Transcriptome 0.628
All targets 0.625
Per target 0.004

Machine Learning Architectures

In the course of our work, we experimented with different architectures, summarized in Ta-

ble 3. Panels (a) and (b) explore different ways in which the information across different

tiles might be combined. Panel (a) considers whether the model should receive as input

separate embeddings for each tile in a patient’s WSI, or the average embedding across tiles.

Maintaining separate embeddings for each tile performed better, which essentially provides

the model with more, albeit correlated, training examples. Panel (b) considers whether

to generate predictions for each tile separately, or to incorporate an attention mechanism,

allowing the model to make patient-level predictions while attending to spatially adjacent

tiles. While spatial attention did not benefit our models overall, the prediction of certain

targets did benefit; for example, in TLR9 the Spearman correlation between observed and

predicted expression increased from 20% to 48%.

Panel (c) considers the value of training across multiple biomarker tasks. Specifically, we

compare an approach where we train separate models to predict each target, train a single

model to simultaneously predict all targets, or train a single model to predict expression

transcriptome-wide then subset the targets of interest. The last strategy performed best,
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and both multi-task strategies substantially outperformed the individual (single-task) strat-

egy for our model architecture.

4 Discussion

At the core of our work is a demonstration of the ability of machine learning models, using

standard H&E images as input, to impute multiple types of molecular covariates of potential

clinical significance. Specifically, we showed high quality imputation of both copy number

amplifications (CNAs) and transcriptome-wide RNA-seq. We also defined, for each of our

target genes, a derived signature that aims to capture the transcriptional consequences of a

CNA in that gene; this signature provides a quantitative biomarker for CNA “phenocopies”

[65]. Our ML models achieve strong predictive accuracies across all three types of biomark-

ers. For both RNA-seq and amplification signatures, we achieved good predictions across

the spectrum of expression levels, as measured by correlation coefficients. And across all

three modalities, we demonstrated high accuracy in identifying individuals whose biomarker

levels are elevated, corresponding to a predicted amplification or overexpression event.

Machine Learning Lessons

A key factor in the strong performance of our ML models is that they exploit commonalities

of cancer mechanisms across cancer types, as well as different genes and mutations, as they

manifest both in the H&E slides and in the molecular readouts. In this regard, our work

stands in contrast to the standard approach in digital pathology, where a model is usually

trained separately for each biomarker prediction task. For example, in the work of Arsalan

et al [16], over 13,000 distinct models are trained, one for each cancer, biomarker, and fold.

The recently published H&E foundation models take a significant step forward, training a

single model that provides a uniform, pan-cancer featurization. Indeed, Chen et al [9] show

that these foundation models are able to provide at-or-beyond state-of-the-art performance

across a very diverse range of tasks. However, they typically use single task-specific heads
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that do not attempt to leverage shared mechanisms across different prediction tasks, such

as different biomarkers. In our work, we showed that the predictive performance of our

models increases significantly as we move from predicting a single molecular readout to a

multi-task prediction across all of our target genes to a transcriptome-wide prediction. A

broad comparison to the results of Arslan et al is challenging due to the very limited overlap

in biomarkers between their work and ours. However, for CDK4, which is the only shared

RNA biomarker, they report at AUROC of around 0.72 (averaged across 3 cancer types) [16],

whereas we obtain an AUROC of 0.84 pan-cancer; of 0.75 in a stratified analysis, averaged

across all cancer types; and of 0.77 when filtering to 4 relevant cancer types (specifically,

breast, colorectal, lung, and pancreatic).

The potential downside of our pan-cancer, pan-biomarker approach is that it may not max-

imally learn to recognize features that capture tumor- or biomarker-specific variation and

instead may focus on learning features that generalize across tasks. As we showed, this

limitation can be addressed by refining our base model to a specific prediction task; this

can be a single cancer, a single biomarker, or a combination of both. As we showed in our

MET case study, these fine-tuned models can provide improved performance for a specific

prediction task. A similar process could be applied to fine-tune a biomarker predictive model

to a treatment-response data set for a drug with a relevant MOA, shifting the model towards

better predicting patient response. Because of the extensive pre-training of the model, such

fine-tuning might be feasible even from the small-scale cohorts available in phase 1/2 clinical

trials.

Our models achieve considerably higher performance at predicting RNA and even higher

performance at predicting amplification signatures. We believe that this higher performance

derives from several sources. First, quantitative traits offer enhanced statistical power over

binary or ordinal traits such as CNA, since continuous data capture more granular phe-

notypic variation, and provide meaningful information across the entire set of individuals,

significantly increasing the effective sample size. Second, multiple studies have shown that

copy number amplification is only one mechanism by which clinically relevant activation of
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a gene or pathway might be achieved, and other mechanisms might converge on the same

pathway, resulting in the same phenotypic consequences. Our use of alternative genome-wide

signatures captures a broader range of these “CNA phenocopy” mechanisms [65], and avoids

creating artificial and biologically meaningless distinctions in the training set, which serve to

confuse the ML model. Moreover, there are indications [65, 66] that patients lacking a muta-

tion in a particular target but with a transcriptional pattern concordant with that mutation

may benefit from the same class of treatments as a patient harboring a genuine amplification.

One important extension of our work is to train the models to predict protein levels, since

proteins are the direct therapeutic targets of the majority of drugs (including those that we

focused on in our study). Notably, Arsalan et al [16] achieve a higher predictive accuracy on

protein biomarkers than on RNA. Given our results, we believe that a multi-task approach

would be highly beneficial in this context as well. Moreover, the generality of our framework

would allow multi-task learning on multiple biomarker types in the same model, enabling

information transfer across CNA, RNA, protein, and more.

Recognizing the importance of spatial heterogeneity of tumors, we also considered several

machine learning approaches for integrating across different regions in the image: averag-

ing the featurization of different tiles prior to making predictions; using a multiple-instance

learning (MIL) approach, where the model is equipped with an attention mechanism to se-

lect relevant subsets of the image; and making individual tile-level predictions then averaging

them. With a few exceptions, the latter approach provided considerably better performance.

We believe this to be the case because the models are trained to predict bulk transcription

levels, which is concordant with a model that predicts these profiles per tile, and then aver-

ages the results. By comparison, averaging before making predictions attenuates the signal

and loses resolution, whereas the MIL approach selects predictions from one region, which

may not fully capture the signal from across the tumor. Previous work [37] has demonstrated

the benefits of MIL in other contexts; it would be interesting to understand which tasks lend

themselves better to MIL versus other aggregation approaches.
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Despite being trained on bulk transcription levels, our models learn spatial variation in ex-

pression levels and amplification signatures that strongly correlate with, but do not simply

recapitulate, the difference between tumor and normal tissue. This is seen from the variation

across targets in our spatial co-expression examples. Comiter et al [67] recently developed

ML models that produce spatially resolved ‘omics data from H&E, using a training set of

aligned H&E and scRNA-seq (versus bulk) data, and showed reasonable spatial correlation,

at the tile level, with both pathologist scores and measured spatial expression. In ongoing

work, we are collecting spatial expression data, which would allow a more quantitative as-

sessment of our spatial predictions and even training models to directly predict measured

spatial ‘omics. We expect this to further increase the accuracy and potential clinical utility

of our predictions.

Potential Impact on Preclinical Development

Our approach enables us to derive full molecular profiles from routinely collected histopathol-

ogy images, defining a “semi-synthetic” cohort where imputed molecular data, inferred from

real H&E, complements other measured covariates, including patient demographics, medical

histories, treatments, and clinical outcomes. Given the abundance of cohorts that comprise

H&E alongside these other covariates, one can produce a very large semi-synthetic cohort

that is highly powered for a broad set of exploratory analyses. Specifically, we can ex-

plore and even construct diverse multi-modal biomarkers, assess which are well-predicted,

and estimate associations with clinically relevant covariates (such as CNAs, survival, or

treatment response). Indeed, our CNA signature biomarkers were derived directly from the

imputed RNA profiles, allowing us to substitute a hard-to-estimate (and potentially lim-

ited) biomarker with one that can be estimated much more robustly; other signatures, which

combine RNA measurements in different ways, can be defined and evaluated similarly. As

discussed above, these predictions could then be fine-tuned using data from phase 1/2 clinical

trials. Overall, our approach provides simultaneous imputations across multiple molecular

modalities and numerous targets, enabling a quantitative assessment of multiple “response

signatures” and the data-driven selection of a biomarker that could be deployed in the design
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and conduct of phase 3 studies and ultimately in personalized medicine.

In addition to identifying biomarkers for a given target within a select tumor type, our ap-

proach also enables the identification of potential new therapeutic opportunities. Specifically,

our pan-cancer results demonstrate an ability to accurately impute expression levels across

multiple cancers from very diverse tissues of origin. These predictions can help highlight can-

cers where a cancer target is significantly expressed, at a level that might be therapeutically

relevant (as compared with other cancers where that MOA is deployed). This could suggest

new opportunities to expand the set of indications for a given targeted drug. While these

insights could potentially be derived from molecular data collected across tumor types, such

data are not regularly collected as part of the standard of care, making it difficult to detect

those opportunities, especially for rare cancers and/or smaller patient subpopulations. In

cases where clinical outcomes in response to treatment are available, we can also test for

associations between a signature and these outcomes. As demonstrated in our preliminary

analysis on cabozantinib response, these associations could potentially inform our under-

standing of which aspect of the drug’s MOA is driving efficacy, and hence suggest potential

avenues for generating improved chemical matter.

Potential Clinical Impact

We selected targets where existing drugs derive tumor-killing efficacy directly from the abun-

dance of the proteins; therefore, there is reason to believe that variation in target abundance

will have an effect on therapeutic response. However, our biomarkers do not directly corre-

spond to protein abundance, potentially limiting their predictive power in some cases. There

are also other factors that might create a discrepancy between target abundance and thera-

peutic benefit. The ultimate test of the value of our biomarkers is measuring how well they

predict outcomes among patients treated with the corresponding drugs. Due to very limited

availability of objective clinical outcome data for these standard-of-care drugs, we were only

able to perform this assessment for a limited number of targeted therapies, as discussed

above. The preliminary results from the cabozantinib case study demonstrate the potential
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for a machine-learning defined signature to be predictive of superior clinical outcomes for

a specific targeted therapy without requiring training on any response or outcome data for

that drug.

Scaling this analysis to a broader set of signature-therapy combinations is a critical direc-

tion for future research and an ongoing focus of our work. If successful, our approach could

enable the use of the H&E images that are ubiquitously collected to identify patients that

are likely to benefit from targeted therapies. This capability can be deployed in a variety of

ways. Most immediately, it can be used as a rapid triage step for suggesting a set of thera-

peutic interventions that might be relevant to a patient; this step could be followed by the

deployment of other, more standard, biomarker assay(s) such as genetic sequencing or IHC,

to verify that the patient is indeed eligible for the drug, given the currently approved label.

Importantly, such ML-based H&E biomarkers could be deployed rapidly, across geographies,

and without specialized equipment or reagents beyond H&E staining and scanning, making

them accessible on a broad scale. In the longer term, however, our work opens the opportu-

nity to directly use an individual patient’s H&E-derived biomarkers to identify and prescribe

therapeutic interventions. Unlike most other biomarkers, which generally focus on one or

two molecular measurements, our H&E biomarkers rely on the full context of whole-slide

images, which provide a broad, detailed, multi-scale phenotype. As such, it is possible that

they may detect more diffuse slide-level evidence that better captures coherent groups of

patients that may have similar outcomes on treatment. This analysis might help identify

patients who are unlikely to benefit, enabling a clinician to suggest a different course of

treatment. On the other side, new patients might be identified. Indeed, the sets of patients

at the higher end (95th percentile) of our RNA and amplification signature biomarkers are

considerably larger than those defined by CNAs directly; thus, our biomarkers could help

expand the population of patients who might benefit from a drug. Notably, this approach is

generalizable across a broad set of targeted therapies.
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Conclusion

Overall, our work highlights the latent potential in the enormous amounts of H&E images

that are regularly collected as part of standard patient care. We have shown that a surpris-

ingly large set of molecular measurements can be robustly imputed from these H&E images.

The scale of the resulting semi-synthetic cohorts, where H&E and clinical covariate data are

complemented with imputed molecular measurements, generates massive statistical power

that can power novel insights in preclinical discovery. The power and flexibility of these

digital biomarkers allows us to define specialized signatures that might better capture the

patient population likely to benefit from a drug. Moreover, digital H&E-derived biomarkers

do not require unique reagents or advanced assays. The ubiquity of H&E data, and the

increasing digitization of this modality, therefore unlock the opportunity to rapidly develop

novel biomarkers and deploy them to broad patient populations around the world.
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